
A Delta-Debugging Approach to Assessing the Resilience of
Actor Programs through Run-time Test Perturbations
Jonas De Bleser

jonas.de.bleser@vub.be
Vrije Universiteit Brussel

Brussels, Belgium

Dario Di Nucci
d.dinucci@uvt.nl

Tilburg University - JADS
’s-Hertogenbosch, The Netherlands

Coen De Roover
coen.de.roover@vub.be
Vrije Universiteit Brussel

Brussels, Belgium

ABSTRACT

Among distributed applications, the actor model is increasingly
prevalent. This programming model organises applications into
fully-isolated processes that communicate through asynchronous
messaging. Supported by frameworks such as Akka and Orleans,
it is believed to facilitate realising responsive, elastic and resilient
distributed applications.

While these frameworks do provide abstractions for implement-
ing resilience, it remains up to developers to use them correctly and
to test that their implementation recovers from anticipated failures.
As manually exploring the reaction to every possible failure sce-
nario is infeasible, there is a need for automated means of testing
the resilience of a distributed application.

We present the first automated approach to testing the resilience
of actor programs. Our approach perturbs the execution of exist-
ing test cases and leverages delta debugging to explore all failure
scenarios more efficiently. Moreover, we present a further optimisa-
tion that uses causality to prune away redundant perturbations and
speed up the exploration. However, its effectiveness is sensitive to
the program’s organisation and the actual location of the fault. Our
experimental evaluation shows that our approach can speed up
resilience testing by four times compared to random exploration.

CCS CONCEPTS

•Computer systems organization→Reliability; Fault-tolerant
network topologies; • Software and its engineering → Soft-

ware testing and debugging.

KEYWORDS

Resilience Testing, Delta Debugging, Fault Injection, Test Amplifi-
cation

ACM Reference Format:

Jonas De Bleser, Dario Di Nucci, and Coen De Roover. 2020. A Delta-
Debugging Approach to Assessing the Resilience of Actor Programs through
Run-time Test Perturbations. In Proceedings of ACM Conference (Confer-

ence’17).ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The actor model [2, 26], which advocates the use of fully-isolated
processes that communicate through asynchronous messaging, is
increasingly popular among distributed systems. Originally em-
bodied by programming languages such as Erlang and Elixir, it
is now also supported by industrial-strength frameworks such as
Akka1 for the JVM or Orleans2 for the .NET runtime.

Akka in particular has enjoyed adoption by large organisations
such as Twitter and Amazon [37], as well as academic attention
in the form of books on distributed systems [31, 41] and dedicated
research [28, 45–47]. Besides elementary abstractions for defin-
ing actors and their communication, the Akka framework also
facilitates the implementation of resilience against anticipated in-
frastructural failures (e.g., network disconnections or node crashes).
For instance, it provides support for guaranteed message delivery
and for rebalancing actors across the nodes of a cluster.

Nevertheless, developers still need to (i) anticipate failure scenar-
ios in their designs (e.g., slow or lost messages), (ii) decide upon the
corresponding resilience tactic (e.g., at-least-once delivery mech-
anisms), and (iii) account correctly for all their implications (e.g.,
process messages idempotently). An empirical study by Gao et
al. [17] confirms that there are ample of opportunities for over-
sights and mistakes.

Despite the need for resilience testing, progress has been slow.
The few techniques proposed in the literature for automated re-
silience testing all perturb a system’s execution by injecting faults
at run time. All need to cope with the problem of exploring a large
space of possible failure scenarios. The number of perturbations and
perturbation targets to consider when generating failure scenarios
is prohibitively large. Existing techniques explore failure scenarios
either (i) randomly [29], (ii) by means of developer-provided speci-
fications [25], (iii) heuristically [21], or (iv) by means of backward
reasoning from a fault-sensitive outcome [4].

In this paper, we present an approach to resilience testing that
combines test amplification [12] with delta debugging [49]. The
former improves existing test cases by injecting faults during their
execution, while the latter efficiently decides which faults to in-
ject. In contrast to many approaches [6, 10, 29, 51] that follow the
Chaos Engineering methodology, our approach also aims to be
used during development as this poses no risk of service outages
and data loss. Instead of relying on failure specifications [25], ex-
ploration heuristics [21], or prohibitively expensive reasoning [4],
our approach uses the domain-specific information captured by
developers in existing tests. In particular, our goal is to improve the

1https://akka.io
2https://dotnet.github.io/orleans

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://akka.io
https://dotnet.github.io/orleans

Conference’17, July 2017, Washington, DC, USA De Bleser et al.

current testing strategy of a system by determining whether tests
also keep succeeding under adverse conditions.

We have several reasons to believe that the combination of test
amplification and delta debugging can expose resilience issues: (i) a
significant amount of time is spent on software testing [40, 43] and
tests are therefore likely to capture domain-specific information;
(ii) developers tend to test the most important features (i.e., “happy
paths”) [8, 30] first due to timing and budget constraints [7, 18]; (iii)
previous work [48] found that the majority of catastrophic failures
could have been prevented by performing simple testing on error
handling code; and (iv) that many distributed system failures are
caused by the untimely arrival of a single event [33].

To summarize, this paper makes the following contributions:

• The design of an automated resilience testing approach
which combines test amplification with delta debugging to
identify shortcomings in the implementation of resilience
tactics in actor-based applications through perturbation of
their test executions.
• The realization of this approach in a tool called Chaokka3.
It automatically identifies mistakes in the implementation of
resilience against actor restarts andmessage delivery failures
in actor systems implemented with Akka.
• An experimental evaluation of three exploration techniques:
rt-r, rt-dd, and rt-dd-o. In particular, we show that the
delta-debugging variants rt-dd and rt-dd-o consistently
find resilience mistakes up to four times faster compared to
the random exploration of rt-r.

The remainder of the paper is structured as follows. Section 2
introduces the actor model and the resilience tactics as supported
by Akka. In Section 3, we present our resilience testing approach
and its realisation in Chaokka. The exploration strategies it can be
configured with are discussed in Section 4. We evaluate the tool in
Section 5, while we discuss the current limitations and challenges
in Section 6. Finally, we discuss related work in Section 7.

2 BACKGROUND

The Scala4 ecosystem features Akka, a modern implementation
of the actor model [2, 26] where actors communicate through asyn-
chronous message sending, rather than shared state. Listing 1 illus-
trates how developers can render anAkka program resilient against
delivery failures of message CountCommand, even across cluster mi-
gration restarts of the GuaranteedDeliveryActor actor. Listing 2
depicts the corresponding test case which uses ScalaTest5 , the
most popular Scala testing framework [13].

2.1 Actors in Akka

Actors in Akka have local state, a message handler, and a mailbox
in which messages are queued. Actors can (i) update their local
state, (ii) change their message handler, (iii) send messages to other
actors, and (iv) create new actors.

3https://github.com/jonas-db/chaokka
4https://www.scala-lang.org
5http://www.scalatest.org

1 import akka.actor.{Actor , ActorRef}

2 import akka.persistence .{ PersistentActor , AtLeastOnceDelivery}

3
4 trait Event

5 case class Plus(amount: Int)

6 case class PlusEvent(amount : Int) extends Event

7 case class CountCommand(id : Long , amount : Int)

8 case class ConfirmEvent(id : Long) extends Event

9 case class Confirm(id : Long)

10
11 class GuaranteedDeliveryActor(ref: ActorRef)

12 extends PersistentActor with AtLeastOnceDelivery {

13
14 override def receiveCommand: Receive = {

15 case Plus(amount) =>

16 persist(PlusEvent(amount))(updateState)

17 case Confirm(id) =>

18 persist(ConfirmEvent(id))(updateState)

19 }

20
21 override def receiveRecover: Receive = {

22 case e : Event => updateState(e)

23 }

24
25 def updateState(e: Event): Any = e match {

26 case PlusEvent(amount) =>

27 deliver(ref.path)(id => CountCommand(id, amount))

28 case ConfirmEvent(id) =>

29 confirmDelivery(id)

30 }

31
32 override def persistenceId: String = "actor -1"

33 }

34
35 class Accumulator extends Actor {

36 var count: Int = 0

37
38 override def receive: Receive = {

39 case CountCommand(id: Long , amount: Int) =>

40 count = count + amount

41 sender () ! Confirm(id)

42 case "result" =>

43 sender () ! count

44 }

45 }

Listing 1: Motivating example.

Class Accumulator on lines 35–45 implements an actor and
defines its message handler as a partial function returned by the
overriding method receive. Each case in the handler determines
how a certain kind of message sent to the actor should be processed.
Messages are removed one-by-one from the mailbox and processed
by automatically applying the message handler. For instance, the
case on lines 42-43 matches "result"messages where the handler
will use the ! operator to send the current value of count to the
sender of the message.

Messages are sent to location-transparent addresses of type
ActorRef (e.g., as returned by sender() on line 43); whether the
actor behind this address is local or remote is transparent to the
sender. The actor’s physical location can be changed through con-
figuration without altering the code. This location transparency
enables our tester to simulate a completely distributed deployment
on a single JVM.

https://github.com/jonas-db/chaokka
https://www.scala-lang.org
http://www.scalatest.org

A Delta-Debugging Approach to Assessing the Resilience of Actor Programs through Run-time Test Perturbations Conference’17, July 2017, Washington, DC, USA

2.2 Persistent Actors in Akka

Persistent actors persist their state according to the principle of
Event Sourcing [15]. Persisted events are replayed whenever an ac-
tor is restarted after a failure or a cluster migration. A persistent ac-
tor is implemented by (i) inheriting from the trait PersistentActor
(line 12), (ii) overriding receiveCommand to define the message han-
dler (lines 14–18), (iii) overriding receiveRecover to define the
handler that replays persisted events (lines 21–23), and (iv) defining
a persistenceId to uniquely identify the entity in a journal where
events are written to and read from (line 32). To persist an event, a
developer must call persist (line 16) with the event to be persisted
and a callback (i.e., updateState on lines 25–30) to be executed
whenever the given event has been persisted asynchronously.

2.3 Message Delivery Semantics in Akka

Akka uses at-most-once message delivery semantics as default.
As a consequence, partial network failures can cause messages
to be lost and therefore might never arrive at the receiver. To
get stronger guarantees, Akka provides at-least-once message de-
livery semantics. Line 27 calls method deliver provided by the
AtLeastOnceDelivery trait with the destination address of actor
ref and a single-parameter callback. The callback is called with
a unique identifier generated by the framework and returns the
message CountCommand that has to be sent. The framework will
periodically resend the message until an acknowledgement with
that identifier has been registered. The actor that has to confirm a
message sends a Confirm message back with the identifier id (line
41). Then, the handler of the receiving actor for Confirm messages
calls method confirmDelivery to confirm the delivery (line 29).

2.4 Test Cases in ScalaTest

Listing 2 shows a test case written in ScalaTest. The test case starts
by instantiating both actors on lines 2–4. Next, ten Plus messages
are sent to GuaranteedDeliveryActor on line 6. After waiting for
2 seconds, the test sends a message "result" to Accumulator to
retrieve the total sum. expectMsg will wait for the reply and then
verify the result with an assertion.

1 "Accumulator" must "correctly accumulate numbers" in {

2 val a = system.actorOf(Props[Accumulator], name="A")

3 val gda = Props(new GuaranteedDeliveryActor(a))

4 val actor = system.actorOf(gda , name="GDA")

5
6 for (i <- 1 to 10) { actor ! Plus(i) }

7 Thread.sleep (2000)

8 a ! "result"

9
10 expectMsg ((1 to 10).sum)

11 }

Listing 2: Test case for the motivating example.

2.5 Resilience Tactic Issues in Akka

Asmentioned before, developers need to be aware of many different
aspects to achieve a resilient system. In this paper, we focus on two
issues that are related to duplicated messages and actor restarts.

Message Duplication. Implementing at-least-once message de-
livery can lead to two issues: (i) a message can arrivemore than once
(i.e., due to a slow confirmation), and (ii) arrive out of order (i.e., due

to re-sending). We focus on the former issue as it is a known prob-
lem [24, 27] and the latter has been widely studied in the domain
of concurrency issues (e.g., [47]). The code shown in Listing 1 is a
simplified version of a real-world example posted on Stackover-
flow6. In that post, a developer experienced an issue about message
duplication: “The problem is that I get different results each time I

run this program. The correct answer is 49995000 but I don’t always

get that [when sending integers 1 to 9999 to GuaranteedDeliveryAc-

tor]”. At first sight, the implementation (i.e., Listing 1) and test case
(i.e., Listing 2) look correct and seem to work in most cases. How-
ever, the developer forgot to take into account that Accumulator
may receive a message more than once. For example, because the
confirmation message sent by GuaranteedDeliveryActorwas not
received in time by Accumulator. The solution is either to remem-
ber and to not process duplicated messages by maintaining state or
to make sure that the processing is idempotent, which appears to
be nontrivial [27].

Actor Restart. Many distributed application failures are due
to services that fail to recover their state after a restart [33, 42].
Ensuring that an actor’s state is preserved across restarts is prone
to the following problems: (i) developers may forget to persist all
of the necessary state or, specific to event sourcing, (ii) developers
may not replay the events from the journal correctly. While the
GuaranteedDeliveryActor is resilient to restarts, its communica-
tion partner Accumulator is not. Any restart will reset its internal
state such that count becomes 0. This, however, will not become
clear from running the test and leads

Both selecting and implementing resilience tactics is far from
trivial. Yet, there is no automated tool support for detecting re-
silience shortcomings in a distributed application.

3 OVERVIEW OF THE APPROACH

We introduce our approach for resilience testing by presenting
the overall process in Section 3.1, defining the trace format in Sec-
tion 3.2, and explaining the perturbations in Section 3.3.

3.1 Resilience Testing Process

Our resilience testing process is implemented in Chaokka. The tool
expects a system implemented with the Akka framework and a test
suite written with ScalaTest. It leverages ScalaTest to discover
test cases and a Scala Build Tool (SBT) plugin in combination
with AspectJ to instrument, monitor, and perturb the execution of
each test case.

In summary, the process comprises 5 steps:
1. Test Discovery: information about each test case is extracted

(e.g., name, duration, and outcome) using ScalaTest and stored
for later access.

2. Test Execution: an execution trace for each test case is col-
lected by instrumenting the system under test with AspectJ and
executing each test case through ScalaTest (Section 3.2).

3. Trace Analysis: the execution trace is analyzed to determine
all perturbations and their targets (Section 3.3).

6https://stackoverflow.com/questions/27592304/akka-persistence-with-confirmed-
delivery-gives-inconsistent-results

https://stackoverflow.com/questions/27592304/akka-persistence-with-confirmed-delivery-gives-inconsistent-results
https://stackoverflow.com/questions/27592304/akka-persistence-with-confirmed-delivery-gives-inconsistent-results

Conference’17, July 2017, Washington, DC, USA De Bleser et al.

4. Perturbation Exploration: the exploration strategy repeat-
edly decides which perturbations are applied during each subse-
quent execution of the test case (Section 4).

5. Report: a resilience report which enumerates the found per-
turbations that cause a change in test outcome, as well as auxiliary
information about the number of iterations, the duration, and gen-
eral test information.

3.2 Test Case Execution Trace

The first step in our resilience testing process produces an execution

trace for the program under test by instrumenting and executing
one of its test cases. The trace is needed to capture all the actions
that an actor can perform at runtime and enable the identification of
potential perturbation targets. Formally, a trace t is a finite sequence
of events 𝑡 = ⟨𝑒1, 𝑒2, . . . , 𝑒𝑛⟩ where 𝑒𝑖 is either a Create, Send, or Turn
event. A Create event is logged whenever a new actor is created; a
Send event whenever an asynchronous message ℎmsg is sent from
𝑙from to 𝑘to; and a Turn event whenever a message ℎmsg coming
from 𝑙from is processed by 𝑘to. Note that a turn corresponds to the
atomic application of the actor’s message handler to a message from
its mailbox. The location denotes an unique place in the system
where the actor resides. Figure 1 depicts all captured information.

𝑡 ∈ Trace = ⟨𝑒1, 𝑒2, . . . , 𝑒𝑛 ⟩
𝑒 ∈ Event :: = Create(𝑙parent, 𝑘child, 𝑏persistent)

| Send(𝑙from, 𝑘to, ℎmsg, 𝑖send, 𝑗turn, 𝑏alod)
| Turn(𝑙from, 𝑘to, ℎmsg, 𝑖send, 𝑗turn)

𝑏 ∈ Boolean is a finite set of booleans
ℎ ∈ Hashcodes is a finite set of hashcodes
𝑖, 𝑗 ∈ Identifier is a finite set of unique identifiers
𝑙, 𝑘 ∈ Location is a infinite set of actor locations

Figure 1: Execution trace events.

The identifiers 𝑖, 𝑗 increase monotonically and uniquely identify
each message that is sent and each turn in which a message is
processed. For a Send event, 𝑖 will be a new identifier, while 𝑗 will
be the identifier of the current turn. For a Turn event, 𝑗 will be a new
identifier, and 𝑖 will be the identifier which was sent along with the
message. In this way, every Turn event knows by which message it
was caused, and every Send event knows from which turn it was
sent. A higher identifier means that the event took place later in
the trace. Based on these identifiers, we can detect the causality
relation ⪯ ⊆ 𝐸𝑣𝑒𝑛𝑡 × 𝐸𝑣𝑒𝑛𝑡 [14] between two trace events 𝑒 and 𝑒 ′
(i.e., which turn sends a message and vice versa). The rules for this
relation are shown in Figure 2. We leverage this relation in one of
the exploration strategies discussed in Section 4.

Vector clocks [14] are usually employed to track this kind of rela-
tion for distributed systems. However, Akka’s location-transparent
actor references enable deployment reconfiguration in such a way
that a single JVM suffices. Therefore, global identifiers suffice for
our prototype implementation.

𝑒 ⪯ 𝑒′ if they are the same event, (1)

𝑒 ⪯ 𝑒′ if 𝑒 and 𝑒′ are turn events of the same actor (2)

and 𝑒 happens before 𝑒′,

𝑒 ⪯ 𝑒′ if 𝑒 is the send event of a message and (3)

𝑒′ is the turn event for the event 𝑒 , and

𝑒 ⪯ 𝑒′ if 𝑒 ⪯ 𝑒′′ and 𝑒′′ ⪯ 𝑒′ (i.e., transitivity) (4)

Figure 2: Causality relation between trace events.

3.3 Perturbations

Our resilience testing process analyses a test execution trace to
compute potential perturbation targets and repeatedly re-executes
the test while perturbing the targets with their corresponding per-
turbation selected by the exploration strategy. To this end, every
strategy generates a so-called perturbation configuration which is
loaded by the tool on every test run. During test execution, every
event is monitored, intercepted and perturbed when it conforms
to a perturbation defined in the perturbation configuration. We
introduce a perturbation for each resilience tactic issue (Section 2.5)
to uncover defects in its implementation. We explain the rationale
for each perturbation, summarized in Figure 3, as well as to which
targets they are applied.

𝑐 ∈ Configuration = {𝑝1, 𝑝2, . . . , 𝑝𝑛 }
𝑝 ∈ Perturbation :: = Duplicate(𝑙from, 𝑘to, ℎmsg)

| Restart(𝑙from, 𝑘to, ℎmsg)
ℎ ∈ Hashcodes is a finite set of hashcodes
𝑙, 𝑘 ∈ Location is a infinite set of actor locations

Figure 3: Perturbation configurations.

Message Duplication. For messages sent using at-least-once
delivery guarantees, the receiving actor might receive duplicated
messages. As illustrated in Section 2, developers need to account
for duplicates in the receiving actor by either remembering mes-
sages that have already been processed or by rendering its message
processing idempotent. Our tester attempts to uncover defects in
this implementation by generating a Duplication perturbation for
every Send event of which the message was sent using at-least-once
delivery semantics (i.e., 𝑏alod is true). The sender 𝑙from, receiver 𝑘to,
and message hashcode ℎmsg are set correspondingly.

Actor Restart. For persistent actors that are restarted due to
node failure or cluster migration, it might not recover to its last
known state due to defects in the implementation of its state persis-
tence or recovery. Our tester attempts to uncover such defects by
generating a Restart perturbation for every Send event that targets
a persistent actor (i.e., 𝑏persistent is true). Restarts happen after
any message, regardless of their message delivery semantics. The
reason why we restart the actor after any message is because they
internally transition to a new state, and at every transition, there
might be a defect in the implementation. The sender 𝑙from, receiver
𝑘to (i.e., the actor that is restarted), and message hashcode ℎmsg are
set correspondingly.

A Delta-Debugging Approach to Assessing the Resilience of Actor Programs through Run-time Test Perturbations Conference’17, July 2017, Washington, DC, USA

C

E

η

A

B

δ

X

γ

αε

D

ζ

βθ

Figure 4: Illustrative actor system.

4 EXPLORATION STRATEGIES

Our resilience tester repeatedly re-executes a test, while applying a
perturbation configuration. We present three exploration strategies
that each determine the perturbation configurations in their way.

4.1 rt-r: a naive exploration

Given a set of perturbations 𝑃 , the tester would ideally explore
the power set P(𝑃) within its given test budget as there are |2𝑃 |
combinations of perturbation configurations. Exploration strategy
rt-r therefore randomly applies perturbation configurations with
one perturbation only, which is linear with respect to the cardinal-
ity of 𝑃 . As such, every perturbation is applied individually and
in random order. Indeed, this strategy will miss combinations of
perturbations that lead to a defect but is out of the scope of this
paper. We use rt-r as the baseline for our evaluation.

4.2 rt-dd: a delta debugging approach

To speed up resilience testing, we leverage the delta debugging algo-
rithm [49] which has a logarithmic and quadratic time complexity
in the best and worst case, respectively. We call the corresponding
exploration strategy rt-dd.

The original delta debugging algorithm recursively tries to re-
duce a set of changes to satisfy 1-minimality (i.e., removing any
single change causes the failure to disappear). Our usage is slightly
different as the tester does not know in advance of which perturba-
tion configurations change the test outcome. Therefore, we consider
the set of all possible perturbations as the initial perturbation con-
figuration that might cause the change. In case the test outcome
changes under this perturbation configuration, there is at least one
perturbation responsible. Delta debugging will consequently reduce
this configuration to the 1-minimal set of perturbations.

We briefly illustrate our algorithm using an example program
whose communication topology is depicted in Figure 4. Every node
represents an actor and every edge represents a sent message. All
actors are persistent and every message is sent using at-least-once
delivery guarantees, except for the processing acknowledgements
which are sent using the default at-most-once guarantees (omitted
from the figure). The order in which the messages are sent is indi-
cated by the greek letter. For instance, messages 𝜖 and 𝜁 are sent

in the same turn after each other, but only after 𝛿 was received.
For illustrative purposes, messages 𝛿 and 𝛾 are only sent after the
confirmation of 𝛼 , while all other messages are sent directly upon
receiving a message. The example has a persistence defect in actor
𝐶 which can be triggered by restarting the actor after processing 𝜖
from actor 𝐵.

1 ✗: Set(𝛼 ,𝛼 ,𝛽 ,𝛽 ,𝛾 ,𝛾 ,𝛿 ,𝛿 ,𝜖,𝜖,𝜁 ,𝜁 ,𝜂,𝜂,𝜃 ,𝜃)

2 ✗: Set(𝛼 ,𝛼 ,𝛽 ,𝛽 ,𝛿 ,𝛿 ,𝜖,𝜃)

3 ✓: Set(𝛼 ,𝛼 ,𝛽 ,𝛿)

4 ✗: Set(𝛽 ,𝛿 ,𝜖,𝜃)

5 ✓: Set(𝜃 ,𝛽)

6 ✗: Set(𝛿 ,𝜖)

7 ✓: Set(𝛿)

8 ✗: Set(𝜖)

Figure 5: Steps of rt-dd to find the perturbation 𝜖.

Figure 5 depicts the corresponding algorithmic steps. The input
is a perturbation configuration that contains all Restart perturba-
tions of the system. Step 1 tests this configuration which consists of
both messages sent with at-least-once delivery semantics (denoted
with greek letters) and messages sent with at-most-once semantics
(denoted with greek letters with a bar). The ✗ outcome indicates
that there is at least one problematic perturbation. The algorithm
proceeds by splitting the configuration into two smaller configura-
tions. The configuration selected in step 2 also results in a failing
test outcome ✗ and is therefore further split. Step 3 determines
that the perturbations do not affect the test outcome ✓. Therefore,
Step 4 examines the other part of the configuration, which needs
to be split into two again. The remaining steps of the algorithm
determine that the test fails when actor 𝐶 is restarted, after having
received the message 𝜖 from actor 𝐵.

Note that another run of this algorithm might result in different
partitions due to the non-determinism of the way configurations are
represented (i.e., the implementation of sets). This also shows that
choosing a partitioning strategy can further optimise the outcome
(e.g., test perturbations of earlier messages first), as also suggested
by Zeller et al. [49].

It is also important to understand that we test the resilience
of a system, and not verify it. Therefore, it is no guarantee that
the system is free of resilience defects when none of the applied
perturbations causes a change in test outcome (e.g., due to weak
assertions). We discuss some of our assumptions and limitations in
Section 6.

4.3 rt-dd-o: optimising delta debugging

When an actor sends messages to several other concurrent actors,
independent execution paths may arise. Therefore actors on these
paths might not affect each other as the state is not shared, even
though one of them processed a message before the other. Inspired
by the idea of hierarchical delta debugging [39], our final explo-
ration strategy leverages the causality relation between actors to
further reduce the perturbation space that has to be explored.

Algorithm 1 determines the causality relation from an execution
trace. Essentially, the algorithm links one turn (i.e., 𝑡𝑏 on line 3)

Conference’17, July 2017, Washington, DC, USA De Bleser et al.

ActorD, T10

ActorB, T12

Confirm, S165

ActorE, T13

Update, S164

ActorA, T0

ActorE, T2

Update, S84

ActorD, T3

ActorE, T5

Confirm, S106

ActorA, T4

ActorB, T7

Update, S116

ActorX, T6

Update, S117

Update, S142

ActorA, T9

Confirm, S143

ActorC, T11

Update, S141

ActorB, T14

Confirm, S177

ActorE, T15

Update, S176

ActorA, T8

Update, S94 Confirm, S95

Confirm, S135

ActorD, T16

Confirm, S195

ActorC, T17

Confirm, S212

TestActor, T-1

Update, S3

Figure 6: The causality relation of Figure 4.

to another turn (i.e., 𝑡𝑎 on line 1) using the message that was sent
from within the former (i.e., 𝑠𝑒 on line 2) and that gave rise to the
latter. Recall from Section 3.2, the send and turn identifiers 𝑖send,
𝑗turn are used to find out exactly which turns caused which sends,
and which sends cause which turns. Finally, line 4 merges 𝑡𝑎 to the
current list of turns found at key 𝑡𝑏 in the map using the merge
operator (|+|).

The result of applying this algorithm to the trace of Figure 4 is
shown in Figure 6. Nodes represent a unique actor turn, incom-
ing edges represent the message that caused that turn, and out-
going edges represent an asynchronous message that was sent
from within that turn. The numbers prefixed with 𝑆 and 𝑇 are the
corresponding send and turn identifiers.

Algorithm 1: Determining the causality relation.
Input : trace, an execution trace
Output : cr, the causality relation represented by mapping turns to a list of causally

connected turns (i.e., Map[Turn,Turn*])
1 for ta ← trace.turns do

2 se← trace.sends.find(s => s.i
send

== ta .isend
) ; // Find se that caused ta

3 t
b
← trace.turns.find(t => se.jturn == t.jturn) ; // Find t

b
that caused se

4 cr← cr |+| (t
b
↦→ ta) ; // Thus, t

b
caused ta via se

5 return cr ;

Whenever a test fails as a result of applying perturbations during
its execution, there is an assertion about the state of an actor at lo-
cation 𝑙 that failed. Collecting all turns (and their causing messages)
of any actor that happened before the last turn of the failing actor
is one strategy to find the perturbations that might have caused
the failure. For instance, if an assertion failed for actor C in Fig-
ure 4, all turns in Figure 6 would be held responsible as they all
happen before that actor’s last turn T17. However, it is clear that
some turns (e.g., T6 and T8) cannot have affected T17 as they reside
on completely independent execution paths. While this strategy is
trivial, it is suboptimal in performance.

A better strategy is not to use the execution trace, but to use
the causality relation extracted from it. All turns that are causally
connected to a specific actor are those found on all paths from the
root to any turn of that actor in the causality relation. This is what
Algorithm 2 determines.

Algorithm 2: Collect causally connected turns.
Input : cr, the causality relation

l, the location of an actor for which an assertion failed
m, the maximum turn identifier

Output : collected, the set of causally connected turns
1 setOfPaths← { cr(cr.root) } ; // All paths start from the root

2 collected← ∅;
3 while setOfPaths != ∅ do // While there are unexplored paths

4 pathOfTurns← setOfPaths.take(1)
5 lastTurnOnPath← pathOfTurns.head // Last prepended turn on line 12

6 if lastTurnOnPath.kto == l then // The turn is of our actor located at l

7 for turn← pathOfTurns do

8 collected← collected + turn // Collect all turns on this path

9 connectedTurns← cr.getOrElse(lastTurnOnPath, []) // Turns caused by

lastTurnOnPath

10 for turn← connectedTurns do

11 if turn.jturn <= m then // Turn identifier must be lower than m

12 setOfPaths← setOfPaths + (turn :: pathOfTurns) // Prepend turn to path

13 return collected

In essence, it performs a breadth-first search to collect all paths
to a given actor and returns all unique turns on these paths. The
first parameter is the causality relation determined by Algorithm 1,
the second parameter is the actor’s location, and the last parameter
specifies that only turns with an identifier lower than that identifier
has to be collected. For all turns of actor C, this algorithm returns
the set {T0,T2,T4,T7,T11,T15,T17}.

However, these turns are only a subset of the required one. The
exploration strategy should also consider turns that might have
affected one of the returned states. For instance, the turns on the
path to T5 should be included as well as these happened before the
turn of T15 which caused T17 of actor C, and therefore T5 might
have affected the run-time state of E. This has to be repeated until
we have every turn included, as shown in Algorithm 3.

Algorithm 3: Pruning perturbations.
Input : cr, the causality relation

l, the location of an actor for which an assertion failed
c, a perturbation configuration

Output : c’, a filtered perturbation configuration
1 turns← collectCausallyConnectedTurns(cr, l, Integer.MAX) ; // Step 1

2 affected← ∅;
3 while turns != ∅ do // Repeat Step 1 for each affected turn

4 turn← turns.take(1)
5 affected← visited + turn

6 extra← collectCausallyConnectedTurns(cr, turn.kto , turn.jturn)
7 turns← turns + (extra - visited)

8 return c.filter(p => affected.contains(s => s.l
from

== p.l
from

&& s.kto == p.kto && s.h ==

p.h))

The first step is shown on line 1, while the other step is deter-
mined through the while-loop on lines 3—8. For the example shown
in Figure 4, the while-loop only makes sense for turns of actor E
that happened before T15. The algorithm would determine that the
turns on the paths {T0,T2,T3,T5} and {T0,T2,T4,T7,T10,T13}
have to be included as well. Thus, Figure 6 depicts the final set by
all blue messages and turns, while grey ones are pruned. Finally,

A Delta-Debugging Approach to Assessing the Resilience of Actor Programs through Run-time Test Perturbations Conference’17, July 2017, Washington, DC, USA

Figure 7: Generated actor system with a resilience defect.

line 8 filters the given perturbation configuration so that only those
perturbations remain which were based on the determined turns
and their causing messages. This means that our implementation re-
laxes the equality of messages as we use the combination of sender,
receiver and message hash. Ideally, perturbations should be based
on the send identifier instead of this combination. However, this
requires an advanced replay mechanism of the whole actor system
which is out of the scope of this paper.

It is also important to note that this optimisation only works
when there are independent execution paths. In the worst case,
rt-dd-o degrades to rt-dd. Compared to rt-r, this is still much
more efficient. Nevertheless, we see several applications where in-
dependent execution paths occur such as publish/subscribe systems
and microservice architectures as discussed in Section 6.1.

5 EVALUATION

We evaluate our approach by applying its prototype implementa-
tion Chaokka on many automatically generated actor systems,
seeded with defects in the implementation of resilience against
actor restarts and duplicated message. Through this experiment,
we aim to answer the following research questions:

RQ1: How effective are the delta-debugging exploration strategies

rt-dd and rt-dd-o compared to the random exploration strategy rt-r

in detecting the seeded resilience defects?

RQ2: What is the overhead of applying Chaokka’s perturbations

on the execution of test cases?

5.1 Design

As there is no open-source corpus of distributed actor systems that
implement resilience tactics with known defects, we automatically
generate actor systems for our experiments and randomly seed
them with resilience defects. The communication topology of the
generated actor systems is representative for those known from
microservice architecture benchmarks [16, 54] and cloud services
such as eBay7. That is, we assume that one actor corresponds to
one microservice.

Figure 7 depicts an example of the actor systems generated for
our experiments. In contrast to Akka’s default, all generated actors
are resilient against restarts and all asynchronous messages are
7See https://youtu.be/U7X3qONf3sU?t=1182 for a description.

resilient against delivery failures. Each actor system consists of 50
numbered actors that persist a counter as their internal state. For
each system, we generate a test case that sends a message to the
entry point of the system (i.e., actor 0) and asserts the system’s state
after all communication has happened. During the execution of the
system, messages are sent with at-least-once delivery semantics to
one or more actors with a higher number. Each message changes
the internal state by incrementing a counter value and persisting it
subsequently. For each system, our generation process randomly
selects 𝑛 communication pairs from all pairs of actors (𝑠, 𝑟) such
that the receiver 𝑟 has a higher number than the sender 𝑠 (i.e., the
communication topology forms a directed acyclic graph). However,
this process might result in a system where not every actor receives
a message. Therefore, we extend the communication pairs such that
every actor receives at least one message. These communication
pairs are also used to generate assertions. In particular, we assert
that the final counter value is equal to the number of paths from
actor 0 to this actor. This number equals to the number of messages
it will receive, and therefore equals the value of the counter. We
simulate a defect in persistence by not persisting its counter value
across restarts, and a defect in idempotence by not checking for
duplicated messages. To answer RQ1 and RQ2, we conduct the
following experiments:

Experiment1: We generate 10 actor systems, summarized in
Table 1, and run our tool on mutants of these actor systems by seed-
ing one defect in one of the actors with number 5, 25, or 45. These
actors were selected as targets since they process their messages
at different times in the execution. The resulting set of systems
consists of 30 actor systems with varying size and defects, as shown
in Table 1. The number of perturbations explored by each strategy
is determined by the number of messages and the perturbation type.
For each exploration strategy, we repeat the experiments for each
system 10 times with a timeout of 30 minutes.

Experiment2:We select the largest generated actor system from
our previous experiment (i.e., the one with 2008 messages) and
systematically select and apply 𝑛 perturbations, where 𝑛 increases
in steps of 100. We repeat this experiment 10 times and compare
the execution time to assess the overhead of each perturbation.

All experiments are executed on an Ubuntu 18.04.3 instance with
252GB of RAM and 8 Intel(R) Xeon(R) CPU E5-2637 v3 @ 3.50GHz
with Hyper-Threading enabled.

Table 1: The mean (A) and median (M) number of iterations

needed to find a resilience defect, as well as the number of

timeouts (T). Resilience defect is either restart actor (R) or

duplicate message (D).

Messages 258 408 616 378 1026 626 706 854 1770 2008
Resilience Defect D D D R D R R R D D
Perturbations 129 204 308 378 513 626 706 854 885 1004

rt-r
A 52 63 32 49 34 62 49 46 42 41
M 36 47 14 35 9 62 42 26 20 30
T 0 4 13 1 13 6 2 6 12 14

rt-dd
A 12 12 13 13 15 14 14 14 14 15
M 12 12 13 13 14 14 14 14 14 15
T 0 0 0 0 0 0 0 0 0 0

rt-dd-o
A 8 10 11 8 11 8 8 10 13 10
M 7 11 11 9 12 9 8 10 12 9
T 0 0 0 0 0 0 0 0 0 0

https://youtu.be/U7X3qONf3sU?t=1182

Conference’17, July 2017, Washington, DC, USA De Bleser et al.

0

50

100

12
9

20
4

30
8

37
8

51
3

62
6

70
6

85
4

88
5

10
04

Perturbations

Ite
ra

tio
ns

Analysis

RT−DD

RT−DD−O

RT−R

Figure 8: Performance of all three exploration strategies.

5.2 Results

RQ1. Table 1 on the previous page depicts the mean (rows A) and
median (rows M) number of iterations that were required by each
exploration strategy to find the seeded defect, as well as the number
of runs that timed out (rows T) after 30 minutes. However, timeouts
only occurred for rt-r as can be seen from that table. Figure 8
depicts the results of all runs, omitting runs that timed out.

It is clear that the number of iterations required by rt-r fluctu-
ates widely, while rt-dd and rt-dd-o are much more stable and
require fewer iterations to find the seeded defect. Note that, in our
experiments, rt-r did not necessarily time out more often when an
increasing number of perturbations needed to be explored. Again,
this is due to its non-deterministic nature. As a testament to their
efficiency, the delta-debugging strategies do not time out at all. For
all experiments, it takes rt-r on average 33 and 37 iterations more
to find the defect compared to rt-dd and rt-dd-o respectively. In
relative terms, rt-r needs 370% of the iterations of rt-dd-o and
236% of those of rt-dd.

The performance of rt-dd-o is slightly better than that of rt-dd.
In all experiments, it takes rt-dd on an average 4 iterations more
compared to rt-dd-o. In relative terms, rt-dd needs 140% of the
iterations of rt-dd-o. While not immediately apparent from Fig-
ure 8, the number of iterations required by rt-dd-o is sensitive to
the location of the defect in the trace of the test case execution.
For defects located early on in the execution, it is more likely that
rt-dd-o can prune away a large part of the trace.

RQ1 Summary

rt-dd and rt-dd-o outperform rt-r and need about four times fewer
iterations for detecting a single failure. rt-dd-o demonstrates that
causality can be leveraged to achieve a better performance than rt-dd.
However, the improvements are highly dependent on program struc-
ture and fault location and can degrade to rt-dd in the worst case.

RQ2. Figure 9 depicts box-and-whisker plots of the different
execution times needed to run the test case with increasingly large
perturbation configurations.

0

200

400

600

800

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Perturbations

S
ec

on
ds Type

Duplication

Restart

Figure 9: Overhead of perturbations.

We observe that the execution overhead of configurations con-
sisting of duplication perturbations grows linearly, while the over-
head of configurations consisting of restart perturbations seems to
grow exponentially. This is to be expected as asynchronous message
sends, the bread and butter of the actor model, are fast and duplicat-
ing one message causes little overhead. The need to restart an actor,
in contrast, should be rare and therefore does cause an overhead
—which might be less outspoken for actors that persist and recover
their state through other means than event sourcing. Nevertheless,
the overhead of at most 13 minutes for the most expensive pertur-
bation configurations is still within acceptable limits and indicates
that it is feasible to incorporate the Chaokka prototype in a testing
process. Moreover, there is ample room for improvements in its
implementation.

RQ2 Summary

The overhead of Chaokka is acceptable for large quantities of message
duplication perturbations applied to a test case, but might become prob-
lematic for large quantities of actor restart perturbations. Mimicking
restarts instead of native restarts by Akka could improve performance
but requires additional engineering effort.

6 APPLICABILITY & LIMITATIONS

To the best of our knowledge, Chaokka is the first resilience testing
approach for actor programs written in the Akka framework. We
briefly discuss other potential application domains of our approach,
as well as its assumptions and limitations.

6.1 Applicability

Actor frameworks. Our prototype targets Akka because it is the
most popular implementation of the actor model for the JVM, with
both a Java and a Scala implementation. However, our approach
is equally applicable to actor frameworks for other languages such
as Orleans, Pykka, Actix, etc. We have provided our tool as a
reference implementation in the hope it may be adapted to these
frameworks as well. It should suffice to intercept the run-time

A Delta-Debugging Approach to Assessing the Resilience of Actor Programs through Run-time Test Perturbations Conference’17, July 2017, Washington, DC, USA

events related to the actor model and trace them in the format
presented in Section 3.2.

Microservices. It is easy to draw similarities between the actor
model and the microservice architecture [36]. One could argue that
an actor is the smallest feasible granularity for such a service. In-
deed, this is the point of view taken by Lagom8, a microservices
framework built on top of Akka. Therefore, our ideas should trans-
pose easily to other frameworks such as Spring Cloud9.

Message brokers. Our perturbations are equally applicable to
systems that use message brokers such as Kafka or RabbitMQ.
Message brokers enable consumers to subscribe to messages pub-
lished to a topic by independent producers. Some brokers support
at-least-once delivery guarantees, but also at the cost of requiring
idempotent processing.

6.2 Limitations

Deterministic Execution Traces. Chaokka extracts perturba-
tion targets from the trace of a single test run only. Therefore, it
might miss resilience defects when subsequent test runs create
different actors and/or messages. Chaokka identifies messages by
their sender, receiver and hashcode. Therefore, in case of their hash-
code change, they will no longer be recognized as a perturbation
target. Several approaches surveyed by Lopez et al. [38] can be used
to detect and warn about non-determinism that is due to scheduling.
Other sources of non-determinism (e.g., random message payloads)
could also be controlled by the tester which is common in dynamic
symbolic execution [20].

Test outcome as recovery oracle. Chaokka needs a source of
truth to determine whether a run-time perturbation is successfully
recovered from. Relatedwork has used developer-provided recovery
specifications [25], contracts [32] and the outcome of test cases [1]
just like Chaokka. Test cases have also been used as oracles in
other applications [11, 23, 50]. However, they could be incorrect [5]
and produce incorrect results.

Input programs. Our prototype deploys, monitors, and per-
turbs its input programs on a single node. Location-transparent
actor references enable reconfiguring a distributed Akka program
so that a single JVM suffices. This transforms the actors from dis-
tributed processes into concurrent ones, but it might cause timing
differences. To avoid this issue, several proven techniques have
been proposed for tracing distributed applications [44]. We deem
incorporating them a large engineering effort left for future work.

Threats to validity.We are aware that our experimental results
are valid only for the defect-seeded actor systems that were ran-
domly generated for our experiments. We have mitigated this threat
by ensuring that their communication topologies are representative
for those of known microservices, and this with varying message
exchange densities and defect locations. Further evaluation of open
and closed source applications is part of our future work.

7 RELATEDWORK

We summarise the related work on resilience testing, delta debug-
ging, and test amplification.

8https://www.lagomframework.com
9https://spring.io/projects/spring-cloud

Resilience Testing. Gremlin [25] tests the failure-handling
capabilities of microservices in a language-agnostic manner by
perturbing inter-service messages at the network layer. Testers
need to specify failure scenarios and the corresponding recovery
observations manually. Similarly, FATE and DESTINI [21] require
specifications for their testing of the resilience of distributed mid-
dleware such as Cassandra against disk and network failures. They
intercept and perturb system calls to this end. Our approach, in con-
trast, takes existing tests as specifications and focuses on generic
mistakes that developers make in the implementation of resilience
at the application level.

ChaosMachine [51] validates or falsifies a resilience hypothe-
sis about try-catch blocks. These hypotheses are either specified
through annotations on the block or discovered through execution
monitoring, and concern the difference in its behaviour in an ex-
ecution with or without an exception (e.g., the exception should
be logged, or there should be no observable side-effects). Taking a
Chaos Engineering approach, ChaosMachine perturbs the system
in production of which the monitored behaviour serves as an ora-
cle. Its exploration strategy injects a single exception at a time, in
contrast to the delta debugging approach taken in this paper.

Chaos Monkey [10] is a well-known Netflix Chaos Engineer-
ing tool that verifies in production whether the service is resilient to
the termination of cloud resources. It has since been extended with
other but equally coarse-grained production perturbations. Net-
flix has also experimented with Lineage-Driven Fault Injection [3],
which reasons backwards from a run about possible failures that
could affect the run’s outcome. Proposed for data management
systems, this so-called lineage comprises coarse-grained data parti-
tioning and replication steps. An initial application of the technique
to Akka systems [19] with more fine-grained steps appeared to
suffer from scalability issues.

Delta Debugging. Delta debugging [49] has been used in the
context of web applications [23], web browsers [49], and microser-
vices [53]. In particular, the work of Adamsen et al. [1] is closely
related to ours as it subjects Android test suites to adverse condi-
tions (e.g., device rotations) and leverage delta debugging to figure
out the problematic ones. Our contribution is not only the transposi-
tion to the domain of actor-based systems but also the identification
of the adverse conditions under which defects in the implementa-
tion of actor resilience tactics will occur. Zeller et al. remarked that
the partitioning strategy affects the performance of delta debug-
ging. The specific structure of inputs such as XML [39] and boolean
formulas [9] has been used to speed up the process. Likewise, static
and dynamic program slicing has been used to partition only the
relevant parts of a program execution [22, 34]. The latter is simi-
lar to our approach as we use a dynamic causality slice to prune
redundant perturbations.

Test Amplification. Chaokka modifies test execution which
is one of the four ways to perform test amplification [12]. In this
field, several works [11, 52] trigger unexpected exceptions during
test runs to check the behaviour of a program in the presence of
unanticipated scenarios. Leung et al. [35] use dynamic traces to find
race conditions and non-determinism in the CUDA programming
language.

https://www.lagomframework.com
https://spring.io/projects/spring-cloud

Conference’17, July 2017, Washington, DC, USA De Bleser et al.

8 CONCLUSION

We have presented an automated approach for testing the resilience
of actor-based programs against adverse conditions. The approach
leverages existing tests by perturbing their execution and using
their outcome as a resilience oracle. Chaokka implements this
approach for the popular Akka framework. As efficiently exploring
the perturbation space is crucial to its success, we have proposed
three exploration strategies and compared them on 30 representa-
tive and fault-seeded generated actor systems of increasing com-
plexity. Our results show that the optimized delta debugging explo-
ration strategy is up to four times faster than random exploration.

REFERENCES

[1] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Møller. 2015. System-
atic execution of android test suites in adverse conditions. In Proceedings of the

2015 International Symposium on Software Testing and Analysis.
[2] Gul A Agha. 1985. Actors: Amodel of concurrent computation in distributed systems.

Technical Report.
[3] Peter Alvaro, Kolton Andrus, Chris Sanden, Casey Rosenthal, Ali Basiri, and

Lorin Hochstein. 2016. Automating Failure Testing Research at Internet Scale. In
Proceedings of the 7th ACM Symposium on Cloud Computing.

[4] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. 2015. Lineage-driven
Fault Injection. In Proceedings of the 2015 ACM SIGMOD International Conference

on Management of Data (Melbourne, Victoria, Australia).
[5] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2014.

The oracle problem in software testing: A survey. TSE 41, 5 (2014).
[6] Ali Basiri, Niosha Behnam, Ruud De Rooij, Lorin Hochstein, Luke Kosewski,

Justin Reynolds, and Casey Rosenthal. 2016. Chaos engineering. 33, 3 (2016).
[7] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven

Amann, and Andy Zaidman. 2017. Developer testing in the ide: Patterns, beliefs,
and behavior. bTransactions on Software Engineering 45, 3 (2017).

[8] David Bowes, Tracy Hall, Jean Petric, Thomas Shippey, and Burak Turhan. 2017.
How good are my tests?. In 2017 IEEE/ACM 8th WETSoM.

[9] Robert Brummayer, Florian Lonsing, and Armin Biere. 2010. Automated testing
and debugging of SAT and QBF solvers. In International Conference on Theory

and Applications of Satisfiability Testing. Springer, 44–57.
[10] Michael Alan Chang, Bredan Tschaen, Theophilus Benson, and Laurent Vanbever.

2015. Chaos monkey: Increasing sdn reliability through systematic network
destruction. In ACM SIGCOMM Computer Communication Review, Vol. 45. ACM.

[11] Benoit Cornu, Lionel Seinturier, andMartin Monperrus. 2015. Exception handling
analysis and transformation using fault injection: Study of resilience against
unanticipated exceptions. Information and Software Technology 57 (2015), 66–76.

[12] Benjamin Danglot, Oscar Vera-Perez, Zhongxing Yu, Martin Monperrus, and
Benoit Baudry. 2017. The Emerging Field of Test Amplification. CoRR (2017).

[13] Jonas De Bleser, Dario Di Nucci, and Coen De Roover. 2019. Assessing Diffu-
sion and Perception of Test Smells in Scala Projects. In Proceedings of the 16th

International Conference on Mining Software Repositories.
[14] Colin J Fidge. 1988. Partial orders for parallel debugging. In ACM Sigplan Notices.
[15] Martin Fowler. 2005. Event sourcing. (2005). https://martinfowler.com/eaaDev/

EventSourcing.html
[16] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,

Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. 2019. An
Open-Source Benchmark Suite for Microservices and Their Hardware-Software
Implications for Cloud & Edge Systems. In Proceedings of ASPLOS.

[17] Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun Wei, Ruirui
Huang, Li Zhou, and YongmingWu. 2018. An Empirical Study on Crash Recovery
Bugs in Large-scale Distributed Systems. In Proceedings of the 26th ESEC/FSE.

[18] Vahid Garousi and Junji Zhi. 2013. A survey of software testing practices in
Canada. Journal of Systems and Software 86, 5 (2013), 1354–1376.

[19] Yonas Ghidei. 2019. Lineage-driven Fault Injection for Actor-based Programs.
[20] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-

mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on

Programming Language Design and Implementation. 11.
[21] Haryadi S Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M Hellerstein,

Andrea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau, Koushik Sen, and Dhruba
Borthakur. 2011. FATE and DESTINI: A framework for cloud recovery testing. In
Proceedings of Symposium on Networked Systems Design and Implementation.

[22] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. 2005. Locating
faulty code using failure-inducing chops. In Proceedings of the 20th ACM/IEEE

International Conference on Automated Software Engineering.
[23] Mouna Hammoudi, Brian Burg, Gigon Bae, and Gregg Rothermel. 2015. On the

use of delta debugging to reduce recordings and facilitate debugging of web
applications. In Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering. ACM, 333–344.
[24] Pat Helland. 2012. Idempotence is not a medical condition. Queue 10, 4 (2012).
[25] Victor Heorhiadi, Shriram Rajagopalan, Hani Jamjoom, Michael K Reiter, and

Vyas Sekar. 2016. Gremlin: Systematic resilience testing of microservices. In IEEE

36th International Conference on Distributed Computing Systems.
[26] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A universal modular actor

formalism for artificial intelligence. In Proceedings of the 3rd international joint

conference on Artificial intelligence.
[27] Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and Tamar Eilam. 2013.

Testing idempotence for infrastructure as code. In International Conference on

Distributed Systems Platforms and Open Distributed Processing.
[28] Shams M Imam and Vivek Sarkar. 2014. Savina-an actor benchmark suite: En-

abling empirical evaluation of actor libraries. In Proceedings of the 4th International
Workshop on Programming based on Actors Agents & Decentralized Control.

[29] Yury Izrailevsky and Ariel Tseitlin. 2011. The netflix simian army. Netflix (2011).
[30] Pavneet Singh Kochhar, Tegawendé F Bissyandé, David Lo, and Lingxiao Jiang.

2013. Adoption of Software Testing in Open Source Projects–A Preliminary
Study on 50,000 Projects. In 17th CSMR.

[31] Roland Kuhn, Brian Hanafee, and Jamie Allen. 2017. Reactive design patterns.
[32] Yves Le Traon, Benoit Baudry, and J-M Jézéquel. 2006. Design by contract to

improve software vigilance. Transactions on Software Engineering 32, 8 (2006).
[33] Tanakorn Leesatapornwongsa, Jeffrey F Lukman, Shan Lu, and Haryadi S Gunawi.

2016. TaxDC: A taxonomy of non-deterministic concurrency bugs in datacenter
distributed systems. ACM SIGPLAN Notices 51, 4 (2016).

[34] Andreas Leitner, Manuel Oriol, Andreas Zeller, Ilinca Ciupa, and Bertrand Meyer.
2007. Efficient unit test case minimization. In Proceedings of the 22nd IEEE/ACM

international conference on Automated software engineering.
[35] Alan Leung, Manish Gupta, Yuvraj Agarwal, Rajesh Gupta, Ranjit Jhala, and Sorin

Lerner. 2012. Verifying GPU kernels by test amplification. In ACM SIGPLAN

Notices, Vol. 47.
[36] James Lewis and Martin Fowler. 2014. Microservices. martinfowler. com (2014).
[37] Lightbend. 2020. Lightbend Case Studies. https://lightbend.com/case-studies
[38] Carmen Torres Lopez, Stefan Marr, Elisa Gonzalez Boix, and Hanspeter Mössen-

böck. 2018. A study of concurrency bugs and advanced development support for
actor-based programs. In Programming with Actors. Springer, 155–185.

[39] Ghassan Misherghi and Zhendong Su. 2006. HDD: hierarchical delta debugging.
In Proceedings of the 28th international conference on Software engineering. ACM.

[40] Glenford J Myers, Corey Sandler, and Tom Badgett. 2011. The art of software
testing. John Wiley & Sons.

[41] Michael Nash and Wade Waldron. 2016. Applied Akka Patterns: A Hands-On

Guide to Designing Distributed Applications. O’Reilly Media.
[42] Lennart Oldenburg, Xiangfeng Zhu, Kamala Ramasubramanian, and Peter Alvaro.

2019. Fixed It For You: Protocol Repair Using Lineage Graphs.. In CIDR.
[43] Roger S Pressman. 2005. Software engineering: a practitioner’s approach.
[44] Raja R Sambasivan, Rodrigo Fonseca, Ilari Shafer, and Gregory R Ganger. 2014.

So, you want to trace your distributed system? Key design insights from years of
practical experience. Parallel Data Lab (2014).

[45] Gianluca Stivan, Andrea Peruffo, and Philipp Haller. 2015. Akka.js: towards
a portable actor runtime environment. In Proceedings of the 5th International

Workshop on Programming Based on Actors, Agents, and Decentralized Control.
[46] Samira Tasharofi, Peter Dinges, and Ralph E Johnson. 2013. Why do scala

developers mix the actor model with other concurrency models?. In European

Conference on Object-Oriented Programming.
[47] Samira Tasharofi,Michael Pradel, Yu Lin, and Ralph Johnson. 2013. Bita: Coverage-

guided, automatic testing of actor programs. In 28th IEEE/ACM International

Conference on Automated Software Engineering.
[48] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle

Zhang, Pranay U Jain, and Michael Stumm. 2014. Simple testing can prevent most
critical failures: An analysis of production failures in distributed data-intensive
systems. In Symposium on Operating Systems Design and Implementation.

[49] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering 28, 2 (2002).

[50] Jie Zhang, Yiling Lou, Lingming Zhang, Dan Hao, Lu Zhang, and Hong Mei.
2016. Isomorphic Regression Testing: Executing Uncovered Branches Without
Test Augmentation. In Proceedings of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering.
[51] Long Zhang, Brice Morin, Philipp Haller, Benoit Baudry, and Martin Monper-

rus. 2018. A Chaos Engineering System for Live Analysis and Falsification of
Exception-handling in the JVM. arXiv preprint arXiv:1805.05246 (2018).

[52] Pingyu Zhang and Sebastian Elbaum. 2014. Amplifying Tests to Validate Ex-
ception Handling Code: An Extended Study in the Mobile Application Domain.
ACM Trans. Softw. Eng. Methodol. 23, 4 (2014).

[53] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding.
2018. Fault analysis and debugging of microservice systems: Industrial survey,
benchmark system, and empirical study. TSE (2018).

[54] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun Zhao.
2018. Benchmarking Microservice Systems for Software Engineering Research.
In Proceedings of the 40th International Conference on Software Engineering.

https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://lightbend.com/case-studies

	Abstract
	1 Introduction
	2 Background
	2.1 Actors in Akka
	2.2 Persistent Actors in Akka
	2.3 Message Delivery Semantics in Akka
	2.4 Test Cases in ScalaTest
	2.5 Resilience Tactic Issues in Akka

	3 Overview of the Approach
	3.1 Resilience Testing Process
	3.2 Test Case Execution Trace
	3.3 Perturbations

	4 Exploration Strategies
	4.1 rt-r: a naive exploration
	4.2 rt-dd: a delta debugging approach
	4.3 rt-dd-o: optimising delta debugging

	5 Evaluation
	5.1 Design
	5.2 Results

	6 Applicability & Limitations
	6.1 Applicability
	6.2 Limitations

	7 Related Work
	8 Conclusion
	References

